Synapse-Specific Control of Experience-Dependent Plasticity by Presynaptic NMDA Receptors
نویسندگان
چکیده
Sensory experience orchestrates the development of cortical circuitry by adaptively modifying neurotransmission and synaptic connectivity. However, the mechanisms underlying these experience-dependent modifications remain elusive. Here we demonstrate that visual experience suppresses a presynaptic NMDA receptor (preNMDAR)-mediated form of timing-dependent long-term depression (tLTD) at visual cortex layer (L) 4-2/3 synapses. This tLTD can be maintained during development, or reinstated in adulthood, by sensory deprivation. The changes in tLTD are mirrored by changes in glutamate release; visual deprivation enhances both tLTD and glutamate release. These effects require the GluN3A NMDAR subunit, the levels of which are increased by visual deprivation. Further, by coupling the pathway-specific optogenetic induction of tLTD with cell-type-specific NMDAR deletion, we find that visual experience modifies preNMDAR-mediated plasticity specifically at L4-L2/3 synapses.
منابع مشابه
Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Iono...
متن کاملPresynaptic and postsynaptic NMDA receptors mediate distinct effects of BDNF on synaptic transmission
In addition to its effects on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) plays an important role in modulating synaptic transmission and plasticity in many brain areas, most notably the neocortex and hippocampus. These effects may underlie a role for BDNF in learning and memory as well as developmental plasticity. Consistent with localization of the trkB rec...
متن کاملNMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin.
Synaptic plasticity requires an activity-dependent, rapid, and long-lasting modification of synaptic character, including morphology and coupling strength. Here we show that a serine protease, neuropsin, directly and specifically modifies the synaptic adhesion molecule L1, which was localized to the presynaptic site of the asymmetric synapse in the mouse hippocampus. Increased neural activity t...
متن کاملTarget-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at py...
متن کاملOn the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors.
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 83 شماره
صفحات -
تاریخ انتشار 2014